Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Applied Physiology ; (6): 1-5, 2015.
Article in Chinese | WPRIM | ID: wpr-243449

ABSTRACT

<p><b>OBJECTIVE</b>Over the last few decades, diabetic cardiomyopathy has been identified as a significant contributor in cardiac morbidity. However, the mechanisms of diabetic cardiomyopathy have not been clarified.</p><p><b>METHODS</b>In the present study, a diabetic rat model was induced by the intraperitoneal injection of streptozotocin. The myocardial CD147 expression and extent of glycosylation, as well as thematrixmetalloproteinases(MMPs) expression and activity, were observed in the diabetic and synchronous rats.</p><p><b>RESULTS</b>The results showed that CD147 located on sarcolemma of cardiomyocytes. The myocardial CD147 expression and glycosylation were significantly increased in the diabetic rats as compared with the control. Expression of MMP-2 protein, MMP-2 and MMP-9 activity were also increased in left ventricular myocardium in the diabetic rats. Tamoxifen only inhibited the enhanced expression of myocardial CD147 in the diabetic rats, but not in synchronous control rats. Tamoxifen inhibited glycosylation of myocardial CD147 in both diabetic and control rats. The inhibition of tamoxifen on CD147 glycosylation was stronger than on the expression in the myocardium. The extent of myocardial CD147glycosylation was positively related toMMP-2 and MMP-9 activity. Tamoxifen induced an inhibition of myocardial MMP-2 and MMP-9 activity in the control and diabetic rats.</p><p><b>CONCLUSION</b>These results indicate that myocardial CD147 expression, especially the extent of glycosylation, regulates MMP-2 and MMP-9 activity, then accelerates cardiac pathological remodeling inducing diabetic cardiomyopathy. Tamoxifen inhibits myocardial CD147 glycosylation and further depress the activity of MMPs. Therefore, tamoxifen may protect the diabetic rats against diabetic myocardium.</p>


Subject(s)
Animals , Rats , Basigin , Metabolism , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Drug Therapy , Glycosylation , Heart , Matrix Metalloproteinase 2 , Metabolism , Matrix Metalloproteinase 9 , Metabolism , Myocardium , Metabolism , Myocytes, Cardiac , Cell Biology , Sarcolemma , Metabolism , Tamoxifen , Pharmacology
2.
Acta Physiologica Sinica ; (6): 301-308, 2013.
Article in Chinese | WPRIM | ID: wpr-333102

ABSTRACT

Cardiac autophagy dramatically increases in heart failure induced by sustained pressure overload. However, it has not yet been addressed if enhanced autophagy plays a role in protecting myocardium or mediating progression from compensative hypertrophy to heart failure. The aim of the present study was to detect autophagic flux of cardiomyocytes from 20-week transverse abdominal aortic constriction (TAC) rats. Fasting rats were used as the positive control for detecting cardiac autophagy. Echocardiography was applied to find the changes of cardiac structure and function. Immunofluorescent histochemistry and Western blot were used to analyze the related biomolecular indexes reflecting cardiac autophagic flux. After the previous methods for detecting cardiac autophagy were confirmed, the autophagic flux in cardiomyocytes of rats subjected to 20-week TAC was examined. The results showed that fasting had no obvious influence on parameters of cardiac structure in rats, including interventricular septal wall thickness and left ventricle posterior wall thickness, but heart rate, diastolic left ventricle internal dimension, fractional shortening of left ventricle dimension, ejection fraction and mitral inflow velocity decreased in rats after fasting for 3 d. Meanwhile, positively stained particles of LC3 and cathepsin D, but not ubiquitin and complement 9, distributed within cardiomyocytes of 3-day fasting rats, indicating augmented autophagic flux. Compared with sham rats, 20-week TAC rats did not show any changes of LC3, cathepsin D, ubiquitin and complement 9 in myocardium detected by immunofluorescent histochemistry. In addition, protein levels of LC3, cathepsin D and p62 in myocardium of TAC rats did not changed. These results reveal the unchanged autophagic flux in cardiomyocytes at middle or late phase of cardiac hypertrophy in TAC rats, implying a balance between inhibition of hypertrophy and activation of pressure load stress on autophagy.


Subject(s)
Animals , Rats , Aorta , Pathology , Autophagy , Cardiomegaly , Constriction , Heart , Myocardium , Pathology , Myocytes, Cardiac , Cell Biology
SELECTION OF CITATIONS
SEARCH DETAIL